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The problem of the onset of instability in a liquid layer flowing down a vibrating 
inclined plane is formulated. For the solution of the problem, the Fourier components 
of the disturbance are expanded in Chebychev polynomials with time-dependent 
coefficients. The reduced system of ordinary differential equations is analysed with the 
aid of Floquet theory. The interaction of the long gravity waves, the relatively short 
shear waves and the parametrically resonated Faraday waves occurring in the flm flow 
is studied. Numerical results show that the long gravity waves can be significantly 
suppressed, but cannot be completely eliminated by use of the externally imposed 
oscillation on the incline. At small angles of inclination, the short shear waves may be 
exploited to enhance the Faraday waves. For a given set of relevant flow parameters, 
there exists a critical amplitude of the plane vibration below which the Faraday wave 
cannot be generated. At a given amplitude above this critical one, there also exists a 
cutoff wavenumber above which the Faraday wave cannot be excited. In general the 
critical amplitude increases, but the cutoff wavenumber decreases, with increasing 
viscosity. The cutoff wavenumber also decreases with increasing surface tension. The 
application of the theory to a novel method of film atomization is discussed. 

1. Introduction 
The linear stability of a liquid layer flowing down an inclined plane was investigated 

by Benjamin (1957) and Yih (1963). They found that the film flow is very susceptible 
to the instability caused by gravity-driven long waves. The nonlinear theories of film 
instability can be found in the review articles by Lin (1983, 1986) and Chang (1994). 
Lin (1967), DeBruin (1974), Chin, Abernathy & Bertschy (1986), and Floryan, Davis 
& Kelly (1987) showed that the film instability may also be caused by relatively short 
shear waves when the angle of inclination is sufficiently small. The former mode of 
instability occurs at low Reynolds numbers, and the latter mode occurs at much larger 
Reynolds numbers. The shear waves in a film flow have the same origin as in Poiseuille 
flow. The former mode has been termed the soft mode and the latter the hard mode. 

In many applications, the inclined plane experiences vibration which is introduced 
either intentionally or unintentionally. The vibration imparted to the plane may 
parametrically excite the so-called Faraday waves. It may also excite Stokes-Rayleigh 
waves in the viscous liquid layer. The parametrically resonated interfacial waves 
between two unbounded fluids was investigated by Jacqmin & Duval (1988). Recent 
works on the Faraday waves can be found in the review articles by Wu (1994), Craik 
(1994) and Miles & Henderson (1990). Statistical studies of chaotic Faraday waves 
have been made by Gluckman, Arnold & Gollub (1995). The consequence of the 
interaction among the soft and hard modes of disturbances with the periodically 
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excited waves in a film flow is of considerable theoretical and practical interest. The 
problem of linear instability of a liquid layer flowing down an inclined plane is 
formulated in the next section. The solution by use of the spectral method and the 
Floquet theory is described in $3. Numerical results are presented in $4. The physical 
significance of the results and a possible application of the theory to a new technology 
of atomization is discussed in the last section. Atomization is widely used in many 
industrial applications including fuel spray formation, waste treatment, powder 
metallurgy, powder milk production, chemical sprays, high-tech surface cleaning, and 
advanced material processings. 

2. Formulation of the problem. 
Consider the stability of a Newtonian liquid film flow down an inclined plane 

making an angle 8 with the horizontal, as shown in figure 1. The rigid inclined plane 
oscillates sinusoidally with a constant frequency SZ. The amplitudes of oscillation in the 
directions parallel and perpendicular to the plane are respectively given by and y. The 
liquid is assumed to be incompressible, and the effect of the ambient gas is neglected. 
The governing equations of the liquid motion in a reference frame moving with the 
inclined plane are 

(1) I 1 

P 
v .  V =  0, 

where t is time, Vis the velocity vector, p is density, P is the pressure, Y is the kinematic 
viscosity, g is the gravitational acceleration and A(t) is the acceleration associated with 
the D'Alembert body force. The Cartesian components of A in the X- and Y-directions 
are given respectively by 

A,(t) = &?'sin Slt and A,(t) = [S12 sinSlt. 

Note that the X-axis is fixed at the mid-depth of the unperturbed liquid layer of 
thickness 20. The Cartesian axis Z is perpendicular to the (X, Y)-plane. The boundary 
conditions corresponding to (1) include the no-slip condition at the inclined plane 
Y = - D, i.e. 

V(X, - D , Z )  = 0. (2) 
At the free surface Y = H(X, 2, t), the kinematics require 

v = (a, + V. V) H, (3) 
where V is the Y-component of V = (U, V, W ) .  Balancing all forces acting on a unit 
area of the free surface, we have 

a, V+ V . V V =  - w + w v + g - A ( t ) ,  

e.n+nSV-n = 0, (4) 

where S is the surface tension, n is the unit outward normal vector related to F = Y- H 
by 

n = VF/IVF(, ( 5 )  

and n is the stress tensor. For the incompressible Newtonian fluid, e is given by 

e = -Pd+p[VV+(VV)T] ,  

where 6 is the Kronecker delta, p is the dynamic viscosity and the superscript Tdenotes 
transpose. 
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FIGURE 1. Diagram of the theoretical model. 

In the dimensionless quantities defined by 

(x, y ,  4 = (x, Y, z ) l D ,  (d,, d,) = (E,  OID, hl = HID, 
o = QD/Eo = 1, 

a = A/EoQ, 
p = PIPE;, 7 = tEo/D, Re = DEo/v, 

(u, v ,  4 = (U, v, WIEO, 

Fr = gD/Ei ,  Fr = Fr(sin 0, -cos O), We = S/pEi D, 

(1) and its boundary conditions can be rewritten as 

(aT- v .  V) v = - V p  + Re-l V 2 v +  Fr -a ,  
v-v = 0, 

v = O  at y = - 1 ;  
r.n+nWeV.n = 0 at y = h,, 
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where 7 = a/pEt is the dimensionless stress tensor. It should be pointed out that the 
gradient operator and the Laplacian in (6)-(9) are now in dimensionless spatial 
variables (x, y, z). 

It is easily verified that an exact solution of the differential system (9-04) is given by 

ii = u( y ,  7) = $Re Fr sin O(3 + 2y - y2)  + d, cos w7 + ir,( y ,  7), (10) 
where 

p = p ( y ,  7 )  = po - [Fr cos 8+ d, sin 071 ( y  - l), 
j J = $ p = O ,  

where po is a reference pressure, and 

a = & ~ C O S / ~ ~ + ~ ( ~ - ~ ) C O S  [/3(2-y)], b = &ysin/3y++es'2--Y)sinG6(2-y)], 
c = e - l~os /3+e~~cos  3/3, d = -ee-~sin,8+e31sin3/?, /3 = (Re/2)l''. 
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The exact solution given by (10) represents an unsteady parallel flow with a flat free 
surface. This is the basic flow the stability of which is being considered. 

Here we consider only the onset of instability with respect to two-dimensional 
disturbances. We perturb the basic flow with disturbances which are represented by 
primed quantities, and write 

(11) I u = u+u’(x, y ,  7) ,  v = u’, w’ = 0, 

p =p+p’(x ,y ,7) ,  h, = 1+7. 

In terms of the Stokes stream function, the velocity disturbance can be written as 

u’ = $u, v’ = -$,, (12) 

where the subscripts denote partial differentiation. We seek a normal-mode solution of 
the form 

w, P’, 7) = [$(x MY, 71, w1 eiorz, (1 3) 

where a is the wavenumber, and $,A and h are the amplitude functions of +, p‘ and 
7 respectively. Substituting (12) and (13) into the curl of (6) and neglecting the 
nonlinear terms, one obtains the partial differential equation for $: 

(14) 

This is the well known Orr-Sommerfeld equation (Orr 1907; Sommerfeld 1908) except 
that $ here is an implicit function of time as well as y. Hence the partial time-derivative 
term that appears in (14) takes the place of the ia-term arising from time differentiation 
in the original Orr-Sommerfeld equation for steady basic flow. The primes in (14) 
denotes differentiation with respect to y. Substituting (1 1) into (8) and (9), expanding 
u’ and p‘ in Taylor’s series about y = 1, and neglecting nonlinear terms, one has the 
boundary conditions at y = 1 : 

Re[@, + iau) ($u,-az$) - iauu, $1 - $uyy + 2a2$,, - a4$ = 0. 

01 = (a, + a,) 7, (15) 

7 ailu u+ ail u’+ a, = 0, (16) 

where p’ is found from (6) with a linear approximation to be 

Note that (16) and (17) arise from the tangential and normal components of (9), 
respectively. Substituting (lo), (12) and (13) into (8) and (15)-(17), one has 

$(- 1 , ~ )  = $’(- 1 , ~ )  = 0, 
[a,+ i aq l ,  T ) ]  h +ia$( 1 , ~ )  = 0, 

u“h 4- $”(1,7) 4- a2$(1, 7) = 0, 

1 
Re 

(a,+ iau) $’(l, 7 )  - - [ $ f f f (  1,7) - 3a2$’(1, 7)]  +ia[Frcos B+d, sin 07+  a2 We] h = 0 .  

(22) 



Instability of a liquid film JOW over a vibrating inclined plane 395 

The differential system consisting of (14) and (19x22) is to be solved to determine 
the condition of stability for the basic flow described in (10). 

3. Chebyshev-Floquet solution 

polynomials, 
The solution of (14) will be constructed as a finite s u m  of the Chebyshev 

N 

$(Y, 7)  = C an(7) T,(Y), 
n-0 

where N is an integer yet to be determined, T,(y) is the nth Chebyshev polynomial 
defined by 

and a,(7) is an unknown function of time. There are terms in (14) which are products 
of powers of y and the derivatives in y of $. It can be shown that (Gottleib & Orszag 
1986) these terms can be expanded as 

G(y) = cos(ncos-'y), - 1 < y < 1, 

where bn are related to a, for any given power r and the qth-order derivative. For 
example, the b,(7) for r = 0, q = 2 in (23) is 

and bn(7) in the expansion of y#' is related to an(7) by 

cnbn = 2n(n+1)an+,+ p(pB-n2-l)ap, 
p-n+3 

n+p-odd 

where cn = 0 if n < 0, and co = 2, c, = 1 when n > 0. 

Chebyshev series. First, uo and ug can be expanded as 
The terms involving exponential functions in (14) can also be expanded in the 

(25) I go = dzV1(7) C k1n T , ( ~ ) + f 2 ( 7 )  X ksn T,(Y)I 

% = dzV;(~) C k3n T,(Y)+.&(~) C k4n T,(Y)I- 

n-o n-0 

n-0 n-0 

k<,(i = 1,2,3,4) in (25) can be found by use of the orthogonal property of the 
Chebychev polynomials, 

where G, and G, are defined following (lo), and 

G3b) = GI 01, G4(Y) = GXY). 
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It can be shown that 
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where 

It follows from (25) and ( 2 6 )  that 

It follows from ( 2 4 ) ,  (25) and ( 2 6 )  that 

where (m + p )  is even. Substituting all relevant expansions into (14) and demanding the 
coefficient of T,(y) to be zero for n = 0 to N, one has 

l N  
-- C [p3(p2 -4)' - 3n2p6 + 3n4p3 - n 2 ( n 2  - 4)p] up(.) 

24 p-n+4 
n+peven 

N N 

p-fl+3 p-n+2 
n+podd n + p  even 

+ iaQ C p(p2  - n2 - 1) ap(7) + z [2a2 - &xQp(p2 - n2 - 2 )  

+&Q + iaRe d, cos WT] a p ( 7 )  + [ - a4 +iia3Q(cfl - c,-J - ia3(gQ + Re d, cos WT) 

1 + iaQ --iaQn(n - l)] cn a,(7) +~ia3Qc,,-, c, a,J7) 

-3a3cn c,-~ afl-1(7) + iaQ[2n(n + 1) -h2cfl] U , + ~ ( T )  

2% 

4 

- ia Red, C L ( 4  x k i ( f l - p )  
t-3 I P I  < N 

l n+d~N 

03 

= -Re p ( p 2  -n2)  uP(7) + a2 Re c, d,,(~). 
p - n f 2  

n+peven 
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Substituting 
and using the 
T:( 1) = n2(n2 - 

the Chebyshev expansion of 6 into the boundary conditions (19)-(22), 
relations T,( - 1) = (- I),, Tk( - 1) = (- T,( 1) = 1, Ti(  1) = n2, 
- 1)/3, T"(1) = n2(n2- 1)(n2-4)/15, we have 

N x (-l)"a, = 0, 

x (- l),-la, = 0, 

ia x a,+iaiz(l,T)h+h = 0, 

n-0 

N 

n-0 

N 

n-0 

N x [a2++z2(n2-1)]a,+iT"(l,7)h = 0, (31) 
n-o 

n2 N 
n&,+ - [ i a i i ( l , ~ ) R e + 3 a ~ - & ( n ~ - l ) ( n ~ - 4 ) ] a ,  

n-0 n-0 Re 
+ia[Frcos8+dysinw+a2 We]h = 0. (32) 

The Chebychev expansion solution has reduced the problem to a system of ordinary 
differential equations in time with N + 2  unknowns: u,,a,, ..., uN and h. Five of the 
required ( N +  2) equations are supplied by the boundary conditions (28H32). The 
other (N-3) equations are obtained from (27) with n = 0, 1, ..., N-4. This is the 
so-called Lanzo's method of approximation (Orszag 1971). 

The system (27)-(32) can be summarized as 

A ( T ) X  = BR (33) 

where x = (uo, a,, . .., aN, h), A is a continuous 2n-periodic matrix and B is a constant 
matrix whose elements can be read off from (27)-(32). According to the Floquet 
theory (see e.g. Nayfeh & Mook 1979), there exists a constant matrix R such that for 
all 7, 

where T is the period, i.e. 2n, and S is the fundamental solution matrix satisfying 

S(7+ T) = RS(7), (34) 

A(7)S = BS. (35) 

Moreover, if the characteristic roots of R are Ai(i = 1,2, ..., rn), then the solution of 
(33) can be written as 

xi = eYlrq(7) with zi(7+ T) = zi(7), (36) 

where the characteristic exponents yi are related to the characteristic roots by 

1 
y4 = -In A,. 

T (37) 

Thus, to find y4 one must first find R. It is seen from (34) that 

S( T )  = RS(0). 

Therefore R can be obtained by integrating (35) over one period with S(0) = 1, where 
/is the identity matrix. The stability property is determined by the sign of yt. The basic 
flow is linearly stable if the real part of yc is positive, if it is negative the flow is stable. 



398 D.  R. Woods and S .  P .  Lin 
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FIGURE 2. Convergence test: Re = 600, We = 0.008, Fr = 0.001, 0 = 30". 

Otherwise the flow is neutrally stable. The imaginary part of yt determines the 
frequency response of the perturbed flow to the 2n-periodic forcing. The dimensionless 
forcing frequency is 2n/T = 1. It follows from (36) and (37) that the frequency of the 
disturbance is shifted from 1 by an amount. 

where (&), and (Af),. are respectively the imaginary and real parts of A,, and k is any 
integer. 

The integration of (35) over one forcing period to obtain R was achieved by use of 
a sixth-order RungeKutta scheme from the IMSL software library. A less accurate 
but faster method by Hsu (1974) was used to spot check the results obtained with the 
Runge-Kutta method. The eigenvalues of R were obtained by use of the software 
DEVCCG of the IMSL library. Several measures were taken to check the possible syntax 
and program errors. It is known (Lin 1967; DeBruin 1974) that the present problem 
with d, = d, = 0, 8 = 90°, and We = 0 reduces to that of plane Poiseulle flow. With 
these parameter values, the results obtained by Orszag (1971) for plane Poiseulle flow 
were recovered. For the case of 8 = 0, the eigenvalues was also obtained by expanding 
4 7 )  in (36) in Fourier series. The eigenvalue y thus obtained is compared with that 
obtained from (37). Good agreement was found for various flow parameters. The 
number of terms required in the Chebyshev series representation was determined by 
successively increasing N until further increase in N resulting in no further improvement 
in accuracy. At least three-decimal-point accuracy is achieved in all of the results to be 
reported. The minimum value of N required depends on flow parameters. It is most 
sensitive to the change in Re. A typical convergence test is displayed in figure 2. 

Although the formulation of the problem and the method of solution allow 
consideration of both the Faraday and the Stokes-Rayleigh waves, we have obtained 
only the results for the case of plane oscillation perpendicular to the incline. Therefore 
in the results to be presented in the next section d, = 0. 
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FIGURE 3. Suppression of surface waves: Re = 5, We = 0.016, Fr = 0.01, B = 90". 

4. Results 
Figure 3 shows how the growth rate of the soft-mode long-wave disturbance in an 

unforced liquid film flow with du = 0 can be reduced by external forcing of increasing 
amplitude for the flow parameters listed in the figure caption. However, it is not 
possible to suppress the long waves completely, because no forcing can be tuned to the 
frequency of the extremely long waves as will be seen shortly. Figure 4 depicts the 
neutral curve in the (du, a)-plane for the same flow parameters as in figure 3. It shows 
the ranges of the forcing amplitude which must be used to resonate the disturbance at 
the subharmonic, synchronous or higher harmonics of the forcing frequencies, for a 
given a. It should be pointed out that the subharmonic excitation refers to the 
subharmonic in frequency, it does not refer to the subharmonic in wavenumber. In the 
unstable region near the origin, the disturbance is untuned to the forcing, and the 
instability is essentially gravitational. It is seen that for a given forcing amplitude, only 
disturbances of a certain finite range of wavelength can be excited. Moreover, there 
is a cutoff wavenumber beyond which the oscillating film is stable. For example, at 
du = 1 and 3, only the subharmonic can be excited, but at du = 5 and 6 both the 
subharmonic and synchronous waves can be excited. The growth rates corresponding 
to these values of du are plotted in figure 5.  Note that growth rate of the synchronous 
wave is higher than that of the subharmonic one when both exist for the parameters 
given. However, the subharmonics can be excited more easily with a smaller du. 

Figure 6 shows the effect of Re on the stability. The critical du for each mode of 
resonant wave is seen to decrease when Re is increased for a given a. Thus in order to 
produce parametric resonance in a film at a lower forcing amplitude but the same 
frequency, one may reduce the viscosity of the liquid film of a given thickness and 
surface tension. The effects of Re on the growth rate are depicted in figure 7. For 
Re = 5 and 10, only the subharmonic resonance can be generated. At Re = 47.4 both 
the subharmonic and the synchronous waves are generated. An additional mode 
corresponding to the 3/2-mode appears when Re = 100 or 150. Contrary to the 
situation in figure 5, the maximum growth rate of the subharmonic waves is now higher 
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mean flow 
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\ 

Unstable 
(synchronous) 

.* ............... Stable ...... 
0 .  * 

*. ............. 
0 1 2 3 4 5 

Wavenumber, a 
FIGURE 4. Typical neutral curves for the combined flow: Re = 5, We = 0.016, Fr = 0.01, 8 = 90". 

Wavenumber, a 
FIGURE 5. Effect of d, on growth rate: Re = 5, We = 0.016, Fr = 0.01, 0 = 90'. 

than that for the synchronous waves for Re = 47.4 and 100. Note that while the 
maximum growth rate of the synchronous waves increases monotonically with Re, in 
this figure, that of the subharmonics does not change monotonically with Re. 

Figure 8 displays the effect of We on the neutral stability curves. It is seen that as 
We is increased, the neutral curves changes little when a is relatively small. However, 
the change is drastic when a is relatively large. Both the critical amplitude of instability 
and the cutoff wavenumber for stability are decreased, as We is increased. The surface 
tension is only effective in suppressing the waves of wavenumber greater than that 
determined by the intersection of the lower branch of neutral curves of each mode for 
different We. For waves of smaller wavenumber, surface tension is actually 
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Wavenumber, a 
FIGURE 6. Effect of Reynolds number on neutral curves: We = 0.016, Fr = 0.01, 0 = 90". 

*, Re = 5 ;  A, Re = 10. 

FIGURE 7. Effect of Reynolds number on growth rate: d, = 1, We = 0.016, Fr = 0.01, 0 = 90'. 

destabilizing. The suppression of both the subharmonic and synchronous waves by 
surface tension is depicted in figure 9. 

Figure 10 shows that gravity has very little effect on the growth rate of 
subharmonically resonated waves. In a weightless environment the resonated 
subharmonic waves are slightly shorter than those observed on Earth for the flow 
parameters given in the figure caption. 

Figure 11 shows that there is no discernible difference in the amplification curves for 
0 = 0" and 90" for the parametrically excited waves at the given parameter values. Of 
course the angle of inclination 0 does have a known effect on the amplification of the 
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Wavenumber, a 
FIGURE 8. Effect of Weber number on neutral curves: Re = 5. Fr = 0.01, 8 = 90". 

*, We = 0.016; A, We = 0.16. 

3 

FIGURE 9. Effect of Weber number on growth rate: d, = 1 ,  Re = 47.4, Fr = 0.01, B = 90". 

untuned gravity waves near a = 0. However, the growth rates of tuned and untuned 
waves are several order of magnitude different. Information on the wave speed of 
stable and unstable disturbances is given in figure 12 for the flow parameters indicated 
in the figure. The case of d, = 0 is for the unforced film and d, = 5 is for the vibrating 
film. For the unforced film the appropriate velocity scale is not QD. If the average 
velocity, u, in the film flow is used as the reference velocity, the Reynolds number 
Rel, the Weber number We, and the Froude number Fr, for the free film flow can be 
defined as 

Re, = u, D / v ,  We, = S/pui D, Fr, = gD/& u, = 4gD2 sin B/3v. 
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FIGURE 10. Effect of Froude number on growth rate: d, = 1, Re = 5, We = 0.016, 6 = 0" 

Wavenumber, a 
FIGURE 11.  Effect of inclination angle on growth rate: dy = 1, Re = 5, We = 0.016, Fr = 0.01. 

It can be verified easily that for all Q, 

We, = 9 We/( 16RezFr2 sina O), Fr, = 3/Ry4 sin 8. 

Thus the values of Re,, We, and Frv corresponding to Re, We and Fr given in the figure 
caption can be calculated from these equations. It follows from (13)  and (36) that the 
wave speed Fcan be obtained from 

For the case of d, = 5 ,  the slope of the (y,)pz curve is found to be - 0.1 for the tuned 
stable or unstable waves. Thus cis 0.1, which happens to be equal to 2FrRe. It is seen 
from (10) that this is equal to the unperturbed free surface velocity. Therefore the 

Re, = $ReaFr sin 8, 

T = - a(y,),/aa. 
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FIGURE 12. Growth rate and wave frequency: Re = 5, We = 0.016, Fr = 0.01, I9 = 90". 

Wavenumber, a 
FIGURE 13. The three forms of instability: Re = 293, We = 5,  Fr = 1, 19 = 1'. 

resonated waves are standing waves relative to the moving free surface. However, the 
untuned stable waves with a -= 0.25 are highly dispersive, since the slope along the a, 
(Y& curve is a function of the wavelength. The real and imaginary parts of (yi) for the 
unforced film flow are also given in figure 12 for reference. It is seen that the relatively 
short stable waves progate at the free surface velocity in an unforced liquid layer. For 
relatively long unstable waves the wave speed increases as a -+ 0 and approaches 0.2, 
which is twice the free surface velocity. The jumps in the wave speeds in figure 12 are 
due to the transition from one domain to another of the excited modes. 

At small angle of inclination, one expects to see the emergence of the shear waves 
(Lin 1967; DeBruin 1974; Chin et al. 1986; Floryan et al. 1987). Figure 13 shows the 
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FIGURE 14. Effect of Weber number on shear mode: We = 10, other parameters as figure 13. 
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FIGURE 15. Effect of Reynolds number on shear mode: Re = 327.8, other parameters as figure 14. 

relative magnitudes of the amplification rates for the surface waves, the shear waves 
and the Faraday waves at the flow parameters given. It is seen that both the surface 
waves and shear waves are quickly dominated by the Faraday waves as d,, is increased. 
When the free surface is stiffened by doubling We with the rest of parameters in figure 
13 kept constant, the shear waves start to enhance the resonated waves of relatively 
short wavelength as can be seen in figure 14. When the Reynolds number is increased 
from that given in figure 14 with the rest of the parameters kept constant, the 
enhancement of Faraday waves by shear waves becomes very prominant at dv = 1 as 
shown in figure 15. The maximum amplification rate of the shear waves is actually 
much larger than the synchronous Faraday waves at  dv = 1. 
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5. Discussion 
Three linearly independent wave modes are identified at the onset of instability of a 

liquid layer flowing down an oscillating inclined plane. The most persistant, though the 
weakest waves, are the long waves. The growth rate of the unstable long waves may 
be considerably reduced and their wavelength increased by introducing vibration 
perpendicular to the incline. However, increasingly large amplitude of vibration must 
be applied to increase the cutoff wavelength of unstable long waves. It is shown that 
there exists a critical amplitude of vibration below which the Faraday resonant wave 
cannot be generated, for a given set of relevant flow parameters. There also exists a 
critical vibration amplitude below which only the waves which are the subharmonic of 
the external periodic forcing can be parametrically resonated. Above this second 
critical amplitude, the subharmonic as well as the higher harmonic waves can be 
simultaneously resonated. There also exists a cutoff wavelength below which a given 
forcing is not able to overcome the surface tension to resonate the system. The cutoff 
wavelength increases with We. On the other hand, the critical amplitude decreases with 
increasing Re. The growth rate of the subharmonic wave may or may not be greater 
than the synchronous or higher harmonic waves, depending on the flow parameters. 

It is known (Lin 1967; DeBruin 1974; Chin et al. 1986; Floryan et al. 1987) that at 
small angles of inclination the relatively short shear waves may emerge at sufficiently 
large Reynolds numbers to compete with the long gravity wave when the incline is 
stationary. It is shown that the shear wave may be employed to enhance the growth 
of the Faraday wave. Although the growth rate of shear waves at small 8 may be larger 
than that of the Faraday waves for a narrow range of wavelength, the former are found 
to stabilize at larger cutoff wavelengths than that for the Faraday waves as can be seen 
from figures 14 and 15. Hence the neutral curves delineating the effect of Re, We and 
Fr on short shear waves at small 0 remain qualitatively the same as those depicted in 
figures 4, 6 and 8. Moreover the excited subharmonics are essentially Faraday waves 
of wavelength much longer than that of shear waves. Therefore the effects of all 
relevant parameters in the case of small 8 and large Re, for which shear waves may 
emerge to compete with short Faraday waves, remain qualitatively the same as those 
depicted in figures 2-1 2. However, numerical calculation requires much more 
computer time for Re of order several thousands. It should be pointed out that the 
shortest waves in a film flow forced at a given set of flow parameters are associated with 
the Faraday waves, not with the shear waves. The present analysis may be extended 
to treat three-dimensional disturbances. The fundamental mechanism of instability 
will probably remain the same. The neglected Stokes-Rayleigh waves associated with 
d, =I= 0 are expected to have a very weak effect on the resonant Faraday waves. This 
remains to be demonstrated, however. 

The results presented here indicate that a vibrating plate may be used to economically 
atomize the liquid film flowing over it. Atomization is usually achieved by breaking up 
a liquid jet into small droplets. A plane liquid film may be made to provide a much 
larger surface area for a much higher rate of atomization. The produced droplet 
diameters are controlled by the wavelength of the resonated waves. Thus the atomized 
droplets will not be of uniform diameter, since the unstable waves have a finite 
bandwidth of wavelength. If the population of the produced droplets is proportional 
to the growth rate of the disturbance (Taylor 1940), then the atomized droplets may 
have a mono- or bi-modal size distribution depending on whether the film is resonated 
to produce only the subharmonic or both the subharmonic and the synchronous 
disturbances. One may also produce smaller droplets by reducing the film thickness. 
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The experiment on atomization is in progress and results will be reported upon 
completion. Of course, for actual industrial applications, quantitative effects of domain 
boundary and nonlinearity must be considered. Edge effects on the Faraday waves are 
discussed by Douady (1990). A nonlinear stability theory of liquid film flow over a 
vibrating plane will be pursued in future work. In particular the nonlinear interaction 
between the long subharmonic nonlinear waves (Chang 1994) and the linear 
subharmonic Faraday waves is of considerable interest. The random self-modulation 
and spatio-temporal chaos associated with parametric excitation examined by 
Ezerskii, Kortin & Rabinovich (1986), Ezerskii et al. (1986b), and Gluckman et al. 
(1994), may also occur in this film flow. The control of the sideband instability of both 
the soft and hard modes of film waves may be possible. 

This work was supported in part by grant no. DAAL03-89-K-0179 and DAAHO4- 
93-G0395, ARO and no. NAG3-1402 of NASA. The computation was carried out with 
the computer facilities at Clarkson University. 
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